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Abstract

In this talk, we present our results on spacelike minimal Lagrangian surfaces in the
two dimensional complex hyperbolic quadric Q∗

2. We will show the equivalence between
minimality and flatness of a family of connections and describe the associated isometric S1-
family, and establish a precise correspondence with spacelike maximal surfaces in the anti-de
Sitter 3-space H3

1 through their Gauss maps. By applying loop group method, we construct
explicit families including R-equivariant and radially symmetric examples.

1 Introduction

Minimal Lagrangian surfaces in definite Kähler manifolds are now well-established for the am-
bient space S2 × S2 ∼= Q2 [3, 8]. In contrast, the theory in indefinite Kähler manifolds is far less
developed, where the causal structure introduces phenomena absent in the definite case. In the
pseudo-Kähler setting, the causal type of the immersion is part of the problem: one must impose
and use the spacelike condition to get a meaningful and well-posed surface theory, where the
analytical and geometric behaviors differ significantly from the definite case. This observation
naturally leads to the study of spacelike Lagrangian submanifolds.

Since minimal Lagrangian surfaces in symmetric spaces arise as conformal harmonic maps,
it is natural to study harmonic maps into symmetric spaces that admit an integrable-systems
formulation via families of flat connections on a trivial principal G-bundle. This is realized
through the loop group method of J. Dorfmeister, F. Pedit, and H. Wu [4], which applies
loop group decompositions of infinite-dimensional Lie groups (the DPW method). From this
perspective, spacelike minimal Lagrangian surfaces in symmetric spaces should be amenable to
a loop group formulation.

In this talk, we focus on spacelike minimal Lagrangian surfaces in the complex hyperbolic
quadric Q∗

2, a non-compact Kähler–Einstein symmetric space isometric to the product of hyper-
bolic planes H2 ×H2 [5]. Although Q∗

2 is the non-compact dual of the complex quadric Q2 and
minimal Lagrangian surfaces in Q2 have been extensively studied via the loop group method in
[6], the transition is not a mere sign change: the underlying geometry, the associated curvature
conditions, and the resulting integrable equations differ in essential ways. The primary goal of
this paper is to establish a loop group framework for spacelike minimal Lagrangian surfaces in
Q∗

2 and to demonstrate that this class of surfaces analogous to that in the compact case.
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2 Preliminaries

Definition 2.1. Let (N,ω) be a Kähler manifold of dimCN = n with the Kähler form ω. An
immersion f : M → N from an m-dimensional manifold M into N is said to be totally real if
f∗ω = 0. In particular, a totally real immersion f is said to be Lagrangian if m = n.

Let Cn
m be the complexification of the pseudo-Euclidean space Rn

m with the complex bilinear
form ⟨ , ⟩ defined by

⟨z,w⟩ = −z1w1 − · · · − zmwm + zm+1wm+1 + · · ·+ znwn, (2.1)

where z = (z1, . . . , zn) , w = (w1, . . . , wn) ∈ Cn
m. The standard Hermitian inner product ( , )

on Cn
m is given by (z,w) = ⟨z, w̄⟩, where w̄ is the conjugate of w. The pseudo-hyperbolic space

H2n−1
2m−1(c) of dimension 2n− 1, index 2m− 1 and constant sectional curvature c < 0 is then

H2n−1
2m−1(c) :=

{
z ∈ Cn

m | (z,z) = ⟨z, z̄⟩ = 1

c

}
.

In particular, for m = 1, we have the (2n − 1)-dimensional anti-de Sitter space H2n−1
1 (c). The

anti-de Sitter 3-space is denoted by H3
1(−1), and the complex anti-de Sitter 3-space is denoted

by CH3
1, and the complex hyperbolic quadric Q∗

2 in CH3
1 can be realized by

Q∗
2 :=

{
[z] ∈ CH3

1 | ⟨z, z⟩ = 0
}0
, (2.2)

where the superscript 0 denotes a connected component. It is known that Q∗
2 is a homoge-

neous Kähler-Einstein manifold and it is isometric to H2 ×H2, where the curvatures of the two
hyperbolic planes H2 are normalized to −4, [5, 9].

Let f : M → Q∗
2 be a spacelike Lagrangian conformal immersion from a Riemann surface

M into Q∗
2. Moreover, let D ⊂ M be a simply connected domain with conformal coordinate

z = x+ iy. Then the induced metric on D can be computed as

ds2M = 2eudzdz̄.

Let f : D → H7
3(−1) ⊂ C4

2 be a local lift of f , i.e. f = π ◦ f, where π : H7
3(−1) → CH3

1 is the Hopf
fibration. In fact, the projection f can be realized as [f]. Since f is conformal and Lagrangian,
and satisfies f(M) ⊂ Q∗

2, we obtain

⟨fz, fz̄⟩ = 0, ⟨fz, fz⟩ = ⟨fz̄, fz̄⟩ = eu, ⟨f, f⟩ = 0, ⟨fz, f⟩ = ⟨fz̄, f⟩ = 0. (2.3)

Here ∂z =
1
2(∂x − i∂y) and ∂z̄ =

1
2(∂x + i∂y) are the complex differentiations.

Definition 2.2. If a local lift f defined above satisfies

⟨fz, f̄⟩ = ⟨fz̄, f̄⟩ = 0,

then we call f a horizontal lift.

Since horizontal lifts of f are not unique, we fix one horizontal lift f for time being. Define
the indefinite special orthogonal group

SO(2, 2) :=
{
A ∈M4×4(R) | AT ηA = η, detA = 1

}
, η = diag(−1,−1, 1, 1).

Since the identity component of SO(2, 2) acts transitively on Q∗
2 as the orientation-preserving

isometry, Q∗
2 is isomorphic to the symmetric space:

Q∗
2 = SO0(2, 2)/ (SO(2)× SO(2)) , (2.4)



where the subscript 0 denotes the identity component, see [1, 5]. Indeed, by choosing the
involution σ = Addiag(1, 1,−1,−1) on SO0(2, 2), the fixed point set of σ is exactly SO(2) ×
SO(2). Let f : M → Q∗

2 = SO0(2, 2)/ (SO(2)× SO(2)) and let F : D ⊂ M → SO0(2, 2) be a
local lift of f as

F :=

(
1√
2

(
f+ f̄

)
,− i√

2

(
f− f̄

)
,

fz + fz√
2eu + α+ ᾱ

,−
i
{
fz (e

u + ᾱ)− fz (e
u + α)

}√
(2eu + α+ ᾱ) (e2u − αᾱ)

)
, (2.5)

such that F(z0) = Id, where f is a horizontal lift defined above and

α := ⟨fz, fz⟩. (2.6)

Its Maurer-Cartan form can be computed as follows:

ω = F−1dF = F−1Fzdz + F−1Fz̄dz̄. (2.7)

Since Q∗
2 is a symmetric space as in (2.4) and minimal surfaces in Q∗

2 can be regarded
as conformal harmonic maps, thus the integrable systems approach applies. We consider the
following family of connection 1-forms d + ωλ:

ωλ = λ−1ω
′
p + ωk + λω

′′
p , (λ ∈ S1), (2.8)

where g = Lie (SO0(2, 2)) = so(2, 2) admits the decomposition g = k ⊕ p with the fixed point
subalgebra k = Fix(dσ) = so(2)× so(2) and its complement p, and ωk and ωp are the k- and the
p-valued 1-forms. Moreover ′ and ′′ denote the (1, 0)- and the (0, 1)-parts, respectively. While
the flatness of d + ω corresponds to the flatness of

(
d + ωλ

)
|λ=1, requiring d + ωλ to be flat for

all λ ∈ S1 imposes an additional condition of harmonicity on the spacelike Lagrangian surface
f .

3 Main Results

The structure equations obtained by a SO0(2, 2)-frame can be expressed in terms of the invariants
of f:

eu := ⟨fz, fz⟩, α := ⟨fz, fz⟩, β := ⟨fz, fz̄⟩ and ϕ := e−u⟨fzz̄, fz̄⟩, (3.1)

where ⟨ , ⟩ denotes the scalar product in C4
2 and the subscripts z, z̄ are the complex derivatives.

Then we obtain the first main result by a straightforward computation.

Theorem 3.1. Let f : M → Q∗
2 be a spacelike Lagrangian conformal immersion and Φ be the

associated one-form defined by Φ = ϕdz. Then f is minimal if and only if Φ = 0.

Now introducing a family of connection 1-forms d + ωλ, parametrized by λ ∈ S1, such
that ωλ|λ=1 becomes the Maurer-Cartan form of f. Then we obtain the second main result by
comparing the structure equations.

Theorem 3.2. Let f : M → Q∗
2 be a spacelike Lagrangian immersion and let d + ωλ be the

family of connections. Then the following statements are equivalent:

1. The spacelike Lagrangian immersion f is minimal.

2. The connections d+ ωλ are flat for all λ ∈ S1.

3. The quadratic differential α dz2 is holomorphic and φ = arg (β) is constant, where α, β
are defined in (3.1) and arg (β) denotes the argument of β.



Consider a new local horizontal lift of a spacelike minimal Lagrangian surface f :

f̂ = e−
iφ
2 f, (3.2)

where φ = arg(β) is constant by Theorem 3.2. The new invariants α̂ and β̂ of f̂ are given by

α̂ := ⟨̂fz, f̂z⟩ = e−iφα, β̂ := ⟨̂fz, f̂z̄⟩ = |β|, (3.3)

i.e. |α̂| = |α|, and β̂ is a non-negative real function. By β̂ =
√
e2u − |α̂|2, all the data in

Maurer-Cartan form now can be represented by u and α̂.

Definition 3.3. Denote the new frame of the lift f̂ in (3.2) of a spacelike minimal Lagrangian
immersion by F̂ . Then by Theorem 3.2, there exists a family of frames F̂λ such that F̂λ|λ=1 = F̂ ,
and we call F̂λ the extended frame.

The new family of connection 1-forms d + ω̂λ parameterized by λ ∈ S1 can be explicitly
written as follows:

ω̂λ = F̂−1
λ dF̂λ. (3.4)

Then the flatness condition leads to an elliptic sinh-Gordon equation

ûzz̄ − eû + |α̂|2e−û = 0, (3.5)

where û is a real function with

2eudzdz̄ = (eû + |α̂|2e−û)dzdz̄. (3.6)

Furthermore, by choosing a suitable gauge transformation, we obtain the third main result.

Theorem 3.4. Let f : M → Q∗
2 be a spacelike minimal Lagrangian immersion with induced

metric 2eudzdz̄ and holomorphic quadratic differential α̂ dz2. Then there exists an S1-family of
spacelike minimal Lagrangian immersions {fλ} with the same induced metric and holomorphic
quadratic differential α̂λdz2 = λ−2α̂ dz2.

And by the elliptic sinh-Gordon equation (3.5) and the Maurer-Cartan form of f, we obtain
the fourth main result.

Theorem 3.5. Any spacelike maximal surface fmax in H3
1 with unit normal N , metric 2eû dzdz̄

and Hopf differential Q dz2, induces a spacelike minimal Lagrangian surface f = [fmax + iN ] ∈
Q∗

2, whose holomorphic differential is −iQdz2 and whose metric is

2eu dzdz̄ =
(
eû + |Q|2e−û

)
dzdz̄. (3.7)

Conversely, given a spacelike minimal Lagrangian surface f in Q∗
2 with holomorphic differ-

ential α̂ dz2 and metric 2eudzdz̄, there exists a unique map g = (fmax, N) into the timelike unit
tangent bundle T−

1 H3
1 = H3

1 ×H2 with induced metric 4eudzdz̄, where

T−
1 H3

1 :=
{
(p, v) ∈ TH3

1 | v = (v0, v1, v2) ∈ TpH3
1
∼= R3

1, −v20 + v21 + v22 = −1
}
.

Moreover, both projections fmax and N have the same Hopf differential iα̂ dz2, and the metrics
2eûdzdz̄ of fmax and 2eũdzdz̄ of N are given by

eû = eu +
√
e2u − |α̂|2, eũ = eu −

√
e2u − |α̂|2.



Finally, we apply the loop group method to spacelike minimal Lagrangian surfaces in Q∗
2

through harmonic maps into H2 by the well-known Lie group isomorphism

SO0(2, 2) ∼=
(
SU(1, 1)× SU(1, 1)

)
/Z2,

then we construct several examples with this method. We summarize these as the fifth main
result: Spacelike minimal Lagrangian surfaces in the complex hyperbolic quadric Q∗

2 can be
constructed in the following four steps:

1. Solve the initial-value problem:

dΦ = Φξ, Φ(z0) = Φ0 ∈ ΛSL(2,C)σ, (3.8)

to obtain a unique map Φ : D → ΛSL(2,C)σ.

2. Compute the Iwasawa decomposition (see [7, 4]) of Φ pointwise on D:

Φ = FλB, Fλ ∈ ΛSU(1, 1)σ, B ∈ Λ+SL(2,C)σ, (3.9)

Then by [4, Lemma 4.2], Fλ is the extended frame of a harmonic map into H2. Set the
pair of maps given by another map Fiλ as

(Fλ, Fiλ) ∈ ΛSU(1, 1)σ × ΛSU(1, 1)σ. (3.10)

3. Use the Loop group isomorphism

ΛSO0(2, 2)σ
∼= (ΛSU(1, 1)σ × ΛSU(1, 1)σ)/Z2, (3.11)

one obtains the extended frame Fλ ∈ ΛSO0(2, 2)σ of some spacelike minimal Lagrangian
immersion into Q∗

2.

4. Finally, by using Proposition 3.6 below, we obtain a family of spacelike minimal Lagrangian
immersions fλ into Q∗

2.

In the following proposition and corollary, we will make use of the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Proposition 3.6. Let Fλ be the extended frame defined above. Set

Xλ = (Xλ
ij) := FλF

−1
iλ , Y λ = (Y λ

ij ) := iFλσ3F
−1
iλ . (3.12)

Then the associated family {fλ} of f can be represented by

fλ =
[(

Re(Xλ
11) + iRe(Y λ

11), Im(Xλ
11) + iIm(Y λ

11),Re(X
λ
21) + iRe(Y λ

21), Im(Xλ
21) + iIm(Y λ

21)
)]
.

Corollary 3.7. Let Fλ be the extended frame defined above. Define a map

Φλ = (ϕλ, ψλ) : D → H2 ×H2 (3.13)

by (ϕλ, ψλ) := (iFλσ3F
−1
λ , iFiλσ3F

−1
iλ ). Then {Φλ}λ∈S1 is a family of spacelike minimal La-

grangian surfaces.



4 Examples through the DPW method

4.1 Basic examples

The basic examples are the open part of the diagonal surface and the product of geodesics, see
also in [5].

4.1.1 Open part of the diagonal surface

Define

ξ := λ−1

(
0 1
0 0

)
dz

for z ∈ C. It is easy to solve the ODE dΦ = Φξ by Φ = exp(zξ/dz) with Φ(0) = Id. Moreover,
the Iwasawa decomposition of Φ = FλB is given by

Fλ =
1√

1− |z|2

(
1 zλ−1

z̄λ 1

)
.

By Proposition 3.6, we obtain a family of open parts of the diagonal surface {fλ} parameterized
by λ ∈ S1:

fλ =
[(
1− i|z|2, −|z|2 + i, zλ−1 − iz̄λ, −z̄λ+ izλ−1

)]
.

4.1.2 Product of geodesics

Define

ξ := λ−1

(
0 1
1 0

)
dz

for z ∈ C. It is easy to solve the ODE dΦ = Φξ by Φ = exp(zξ/dz) with Φ(0) = Id. Moreover,
the Iwasawa decomposition of Φ = FλB is given by

Fλ =

(
cosh(λ−1z + z̄λ) sinh(λ−1z + z̄λ)
sinh(λ−1z + z̄λ) cosh(λ−1z + z̄λ)

)
.

By Proposition 3.6, we obtain a family of products of geodesics {fλ} parameterized by λ ∈ S1:

fλ = [(cos s, i cos t, i sin s, sin t)] ,

where
s = λ−1z − z̄λ− i(λ−1z + z̄λ), t = λ−1z − z̄λ+ i(λ−1z + z̄λ).

4.2 Equivariant and radially symmetric examples

We now show two new examples of spacelike minimal Lagrangian surfaces in Q∗
2.

4.2.1 R-equivariant spacelike minimal Lagrangian surfaces

Definition 4.1 (R-equivariant potentials, [2]). Define

ξ = A(λ)
dz

z
, where A(λ) =

(
c aλ−1 + bλ

−aλ− bλ−1 −c

)
, (4.1)

with a, b ∈ R∗ and c ∈ R for z in Σ = {z = x+ iy ∈ C | −κ21 < x < κ22}. And we choose κ1, κ2
so that x ∈ (−κ21, κ22) is the largest interval for which a solution v = v(x) of

(v′)2 = (v2 − 4a2)(v2 − 4b2) + 4c2v2, v′′ = 2v(v2 − 2a2 − 2b2 + 2c2), v(0) = 2b,



is finite and never zero (′ denotes d
dx). When c ̸= 0, we require v′(0) and −bc to have the same

sign. We call such potentials the equivariant potentials.

It is easy to see that Φ = exp(log z · A) is the unique solution of dΦ = Φξ with the initial
condition Φ(0) = Id. Let Φ = FλB be the Iwasawa decomposition of Φ (see below for the
explicit form of Fλ). As discussed in [2, Section 5.1], by the rotation of the domain z → eiθ · z,
the following transformation rule of Fλ follows:

Fλ

(
eiθ · z, e−iθ · z̄, λ

)
= exp (iθA(λ)) · Fλ (z, z̄, λ) . (4.2)

Note that iθA(λ) takes values in Λsu(1, 1)σ and thus exp (iθA(λ)) takes values in ΛSU(1, 1)σ.
The general definition of an equivariant surface can be found in [2], then a straightforward

computation shows that the spacelike minimal Lagrangian surface constructed by the equivariant
potential ξ in (4.1) is an equivariant surface.

Proposition 4.2. Let ξ be an R-equivariant potential defined in (4.1) and let Fλ ∈ ΛSU(1, 1)σ
for λ ∈ S1 be the corresponding extended frame. Then the spacelike minimal Lagrangian surface
fλ :M → Q∗

2 constructed by (Fλ, Fiλ) is equivariant, that is,

f̂λ
(
eiθ · z, e−iθ · z̄, λ

)
= ψ ((exp(iθA(λ)), exp(−iθA(iλ))) f̂λ(z, z̄, λ))

holds, where f̂λ is the horizontal lift of fλ and ψ : ΛSU(1, 1)σ ×ΛSU(1, 1)σ → ΛSO0(2, 2)σ is the
loop group homomorphism.

By Theorem 5.1 in [2], we can obtain that

Fλ =


√

4abλ2+v2

2v(aλ2+b)

(
cosh t̂− cλ

t sinh t̂
) −λt(2cv+v′) cosh t̂+(2t2v+cλ2v′) sinh t̂

t
√

2v(aλ2+b)(4abλ2+v2)√
(aλ2+b)(4abλ2+v2)

t
√
2v

sinh t̂
√

2v(aλ2+b)
4abλ2+v2

(
cosh t̂− λv′

2tv sinh t̂
)
 ,

where f , t and t̂ are given by

f(x) =

∫ x

0

2ds

1 + (4abλ2)−1v2(s)
, t =

√
−ab− (a2 + b2 − c2)λ2 − abλ4, t̂ = t(f − z)λ−1.

It is also easy to compute the map Fiλ. Then by Proposition 3.6, we obtain the explicit form of
this equivariant surface in Q∗

2.

4.2.2 Radially symmetric spacelike minimal Lagrangian surfaces

Definition 4.3 (Radially symmetric potentials, [2]). Define

ξ = λ−1

(
0 1
czk 0

)
dz, (4.3)

for z ∈ Σ = C and k ∈ N and some c ∈ C \ (S1 ∪ {0}). Here we call such potentials the radially
symmetric potentials.

Let Rℓ(z) = e2πiℓ/(k+2)z̄ be the reflections of the domain C, for ℓ ∈ {0, 1, . . . , k + 1}. Note
that

ξ(Rℓ(z), λ) = Aℓξ(z̄, λ)A
−1
ℓ , with Aℓ =

(
e

πiℓ
k+2 0

0 e
−πiℓ
k+2

)
∈ SU(1, 1) (4.4)



holds. Let Φ be the solution of dΦ = Φξ with Φ(z0) = Id and consider the Iwasawa decomposition
Φ = FλB. For c ∈ C\(S1∪{0}), the Iwasawa decomposition of Φ cannot be carried out explicitly,
and hence an explicit description of all radially symmetric surfaces cannot be obtained. By (4.4),
we have

F (Rℓ(z), Rℓ(z), λ) = AℓF (z̄, z, λ)A
−1
ℓ .

This leads to the following proposition.

Proposition 4.4. Let ξ be the radially symmetric potential defined in (4.3) and let Fλ ∈
ΛSU(1, 1)σ for λ ∈ S1 be the extended frame obtained by ξ. The spacelike minimal Lagrangian
surface fλ :M → Q∗

2 constructed by (Fλ, Fiλ) admits discrete rotational symmetries:

f̂λ(Rℓ(z), Rℓ(z), λ) = Aℓf̂
λ(z̄, z, λ), with Aℓ :=


1 0 0 0
0 1 0 0

0 0 cos
(

2πℓ
k+2

)
sin
(

2πℓ
k+2

)
0 0 − sin

(
2πℓ
k+2

)
cos
(

2πℓ
k+2

)
 ,

where f̂λ denotes the horizontal lift of fλ. Moreover, the induced metric of fλ depends only on
the radial coordinate |z|. Such a surface fλ is therefore called radially symmetric.
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